Decomposition of Finite Schmidt Rank Bounded Operators on the Tensor Product of Separable Hilbert Spaces
نویسنده
چکیده
Inverse formulas for the tensor product are used to develop an algorithm to compute Schmidt decompositions of Finite Schmidt Rank (FSR) bounded operators on the tensor product of separable Hilbert spaces. The algorithm is then applied to solve inverse problems related to the tensor product of bounded operators. In particular, we show how properties of a FSR bounded operator are reflected by the operators involved in its Schmidt decomposition. These properties include compactness of FSR bounded operators and convergence of sequences whose terms are FSR bounded operators.
منابع مشابه
WOVEN FRAMES IN TENSOR PRODUCT OF HILBERT SPACES
The tensor product is the fundemental ingredient for extending one-dimensional techniques of filtering and compression in signal preprocessing to higher dimensions. Woven frames play a crucial role in signal preprocessing and distributed data processing. Motivated by these facts, we have investigated the tensor product of woven frames and presented some of their properties. Besides...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کامل$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملG-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
متن کاملSOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS
In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017